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ABSTRACT

The Rankine-Hugoniot equations were developed in their original forms independently by Rankine (1870a, b) and Hugoniot (1887, 1889).  The equations describe the relationships between the physical properties in the two possible states of a moving compressible gas for which mass, momentum and energy are conserved.  The contact surface between these two states is a shock front.  In their original forms, the equations described the relationships for a supersonic gas passing through a stationary shock into a subsonic state.  For blast wave applications, the equations are transformed to describe the physical properties of the gas behind a shock moving into a stationary ambient atmosphere, in terms of the Mach number of the shock.

Assuming the ratio of specific heats of air to be 1.4, the Rankine-Hugoniot equations provide exact values of the physical properties behind the primary shock of a blast wave, with accuracy such that this is the preferred method to calibrate electronic transducers.  For overpressures above about 10 atm, additional degrees of freedom of the air molecules are excited, and the ratio of specific heats must be modified to allow for these real-gas effects.

The most commonly used forms of the equations relate the hydrostatic overpressure, density and particle velocity to the shock Mach number.  In this paper, these equations are extended to give eleven different physical properties in terms of the ratio of specific heats, γ, and for γ = 1.4.  In the latter case, the equations are also inverted to provide the shock Mach number, and thus the other ten properties, in terms of a specified physical property.

To simplify the use of these relationships, they have been incorporated into a series of spreadsheets that provide all of the physical properties behind a shock in terms of any specified property.  The properties may be expressed in terms of the ambient conditions ahead of the shock, or in Imperial or SI units.  The spreadsheets, which will be demonstrated, can be used on any desktop, laptop or palmtop computer, and are available for licensing.

Introduction

The Rankine-Hugoniot equations were developed in their original forms independently by Rankine (1870a, b) and Hugoniot (1887, 1889).  The equations describe the relationships between the physical properties in the two possible states of a moving compressible gas for which mass, momentum and energy are conserved.  The contact surface between these two states is a shock front.  In their original forms, the equations described the relationships for a supersonic gas passing through a stationary shock into a subsonic state.  For blast wave applications, the equations are transformed to describe the physical properties of the gas behind a shock moving into a stationary ambient atmosphere, in terms of the Mach number of the shock.

The Rankine-Hugoniot relationships have been in use for more than a century, and subject, therefore, to intense evaluation.  All such evaluations have demonstrated the absolute validity of the relationships, assuming the correct value of the ratio of specific heats has been used.  The relationships have the same order of reliability as the classical equations of thermodynamics.  As a result, the most reliable method of calibrating gauges and transducers used to measure the physical properties of blast waves, is to measure the shock speed using two simple time-of-arrival detectors, calculate the shock Mach number, and then use this in the appropriate Rankine-Hugoniot relationship to determine the change of the physical property across the shock.  This value can then be related to the output of the transducer.

For the study of blast waves, the primary shock usually is moving into the air of the ambient atmosphere, which can be considered as a perfect gas with a ratio of specific heats, γ = 1.4.  When the overpressure ratio across the primary shock is greater than about 10 atmospheres, corresponding to a shock Mach number of about three, additional degrees of freedom are excited in the air molecules, and the ratio of specific heats can no longer be considered constant.  For shocks with a Mach number greater than 3.5, i.e. hydrostatic overpressure of 13 atm (193 psi, 1330 kPa), this assumption leads to an error of more than 1%.  For shocks with a Mach number greater than 5.5, i.e. hydrostatic overpressure of about 34 atm (500 psi, 3458 kPa), the error is more than 5%.

Many of the Rankine-Hugoniot relationships relating the ratio of the physical properties across a shock to the shock Mach number, can be inverted to provide the shock Mach number as functions of the properties ratios.  These inverse relationships are useful when one of the physical properties behind a shock is known, e.g. the hydrostatic overpressure, and it is desired to find other properties at that point, such as density, temperature, or local Mach number.  The inverse relationships are presented below.

The original rankine-hugoniot relationships

Figure 1.  A perfect gas moving through a stationary discontinuity from state 1 to state 2.  The relevant physical properties of the gas are: hydrostatic pressure P; density ρ, and particle speed w.
Consider a perfect gas moving in a cylinder of constant cross-section and passing from state 1 to state 2 through a stationary discontinuity, as shown in figure 1.  In state 1 the hydrostatic pressure, density and particle speed are P1, ρ1 and w1, respectively, and w1 is supersonic.  In state 2 the corresponding properties are P2, ρ2 and w2, and w2 is subsonic.

The equations representing the conservation of mass, momentum and energy across the discontinuity may be expressed, respectively, as
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where e is the internal energy of the gas, per unit volume.

The enthalpy of the gas, h, is defined as 
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For a thermally and calorically perfect gas
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where R is the universal gas constant and T the absolute temperature.

Using (1) to (6), the following relationships can be derived,
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These relationships may also be written in terms of the Mach number of the flow in region 1, M1, where 
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a1, the speed of sound in region 1 is given by
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the rankine-hugoniot equations for a blast wave shock

At this point it is convenient to change the nomenclature for the situation in which a shock, with speed VS , is moving into an ambient atmosphere at rest.  Suffix 0 will be used to identify the physical properties of the ambient gas, and suffix S to identify those immediately behind the shock, as shown in Figure 2.  For most blast waves, these "peak" values decay rapidly in an almost exponential fashion, as functions of both time and distance.


Figure 2.  Configuration of a shock moving with speed VS into a stationary gas in state 0.
[image: image11.wmf]The gas behind the shock is in state S.  P, ρ, and u are the hydrostatic pressure, density and particle speed, respectively.  The shock Mach number MS = VS/a0, where a0 is the ambient sound speed

Applying these changes to (7) to (10) gives,
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Hydrostatic Pressure

The hydrostatic pressure is the pressure measured by a transducer moving with the flow, or the pressure measured by a transducer that is side-on to the flow such that it senses no component of the flow normal to the transducer.  It is the pressure caused by the vibrational motion of the gas molecules, only.  Some texts refer to this as the static pressure, but here the term hydrostatic pressure is used to emphasize the difference from the total or stagnation pressure.  The hydrostatic pressure in excess of the ambient pressure is the hydrostatic overpressure.

When describing blast waves, hydrostatic pressure is usually measured in units of kiloPascals (kPa), pounds-weight per square inch (psi) or non-dimensionally in atmospheres (atm).  An informal tripartite (US, UK and Canada) agreement recommended that the standard atmosphere to be used when describing blast waves is that at NTP (Normal Temperature and Pressure), viz. 15 C (288.16 K) and 101.325 kPa (14.696 psi).  This was considered to be more appropriate than STP (Standard Temperature and Pressure) for which the standard temperature is 0 C. 

Equation (11) gives the hydrostatic pressure across the primary shock as
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and the hydrostatic overpressure, OPS/P0, the pressure in excess of the ambient pressure P0 , as 
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For γ = 1.4, (13) becomes
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and (14) becomes
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The inverses of (15) and (16), which give the shock Mach number in terms of the pressures, are, respectively, 
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Density

Density (ρ) is the mass per unit volume of a gas, measured in units of kilograms per cubic metre (kg m-3), pounds-mass per cubic foot (lb ft-3) or pounds-mass per cubic inch (lb in-3).  Non-dimensionally, it may be measured relative to the density of air at NTP, which is 1.225 kg m-3 (0.076475 lb ft-3, 4.4256 x 10-5 lb in-3).  When a gas is traversed by a shock, there is a rapid increase of the density.  For an ideal gas with a ratio of specific heats of γ = 1.4, there is an upper limit of 6.0 for the ratio of the densities, ρS/ρ0, across an infinitely strong shock.  In practice, very strong shocks produce other changes to the gas so that the ratio of specific heats, γ, does not remain constant, and larger density changes can occur.

The density ratio across the shock is given by (12) in terms of the shock Mach number, as
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For γ = 1.4
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the inverse is
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Particle velocity

Particle velocity (u) is the translational velocity of the gas within a blast wave, measured in metres per second (m s-1) or feet per second (ft s-1).  Non-dimensionally, the particle velocity may also be quoted relative to either the sound speed in the ambient gas (a0), or the sound speed at the location of the gas particle (a).  u/a0  is not a Mach number, but a dimensionless quantity that is useful in scaling blast waves for different charge sizes and atmospheric conditions.  The particle velocity in terms of the sound speed at the same position in the blast wave, u/a, is a true Mach number, and is known as the local Mach number of the flow.  When considering the blast interaction with a structure, it is important to know if the local Mach number is less than or greater than one.  If the local Mach number is greater than one, i.e. supersonic, a bow shock forms around the structure and this further change the properties of the gas before it can interact with the structure, as described in the section on total pressure, below. 

The co-ordinate transformation for a shock moving into a stationary gas and the corresponding change of nomenclature, using (8), gives
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where a0 is the sound speed in the ambient gas.  Thus, using (22) and (19),
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For γ = 1.4, (23) becomes
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the inverse of  (24) is
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Temperature

Absolute temperature (T) is the temperature of a gas measured from the absolute zero,             -273.16 C, in Kelvin (K).  The absolute temperature at NTP is therefore 288.16 K. The absolute temperature of the gas behind the shock, TS, is obtained in terms of the ambient temperature, T0, using (5), (15) and (19) as
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For γ=1.4,
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and the inverse is 
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Sound Speed

The sound speed of a gas (a) is the speed at which a weak compression or rarefaction wave is transmitted through the gas.  For one mole of an ideal gas P/ρ = RT, where R is the universal gas constant, and the speed of sound is given by a = √(γP/ρ) = √(γRT).  Therefore, the speed of sound is proportional to the square root of the absolute temperature.  The sound speed immediately behind the shock, aS, in terms of the ambient sound speed, a0, is obtained from (26) as,
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For γ = 1.4, (29) becomes
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and the inverse of (30) is
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Local Mach number

The Mach number of the flow immediately behind the shock, uS/aS, using (23) and (29), is 
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For γ = 1.4,
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and the inverse of (33) is



[image: image36.wmf]2

2

4

2

7

25

25

9

6

25

17

÷

÷

ø

ö

ç

ç

è

æ

-

÷

÷

ø

ö

ç

ç

è

æ

+

÷

÷

ø

ö

ç

ç

è

æ

+

+

÷

÷

ø

ö

ç

ç

è

æ

=

S

S

S

S

S

S

S

S

S

a

u

a

u

a

u

a

u

M

.  
(34)

Dynamic Pressure

Dynamic pressure (PD) is defined as one half the gas density times the square of the particle velocity, i.e. ½ ρ u2.  Dynamic pressure is a scalar property of the gas, and since gas is a compressible fluid, is not equal to the stagnation or total pressure exerted on a surface at which the gas is brought to rest, for which see below.  Although the dynamic pressure does not represent the pressure exerted on any surface in the blast wave, it is a useful measure of the relative importance of the drag forces produced by the wave as compared to the hydrostatic forces.  The dynamic pressure immediately behind a shock, using equations (19) and (24), is given in terms of the ambient pressure, as
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For γ = 1.4,
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and the inverse is
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Total Overpressure

Total overpressure (OPT), or stagnation overpressure, is defined as the increase of pressure sensed by a transducer or a surface which is face-on to the flow, as a result of the flow being brought to rest isentropically.  Work is done both to bring the gas to rest and to compress it adiabatically.  The total overpressure is not the same as the reflected overpressure, for which see below, or the dynamic pressure, see above.

[image: image40.jpg]



Figure 3.  Numerical simulation showing the shock reflected from a rigid structure.  The Mach number of the incident shock, MS = 2.5.  The total pressure, PT, is the stagnation pressure on the front face of the structure.  (Courtesy A. A. van Netten) 

When the primary shock of a blast wave strikes a rigid surface face on, it will be reflected, and the reflected shock will run back into the flow, as shown in Figure 3.  If the flow produced by the primary shock is subsonic, i.e. uS/aS < 1, the reflected shock will continue to move back through the flow, and will disperse.  In this case, the face-on rigid surface will continue to be exposed to the decaying flow in region 1 behind the primary shock.  If the flow produced by the primary shock is supersonic, i.e. uS/aS > 1, the reflected shock will move back into the flow until a point is reached when its speed is equal to that of the flow, i.e. MR = VR/aS = uS/aS.  It will then form a bow shock through which the flow must pass before being stagnated at the rigid surface.  The physical properties of the gas are changed as it passes through the bow shock and these changes must be taken into consideration when calculating the total overpressure.

(a) Subsonic case

The overpressure at a stagnation point in a gas may be written as (Prandtl and Tietjens, 1934, p227)
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where p is the pressure in the free stream, ρ the density, w the flow speed, and γ the ratio of specific heats.

Writing (38) in terms of the flow conditions immediately behind a shock gives the total overpressure, OPTS, as
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Writing the physical properties as ratios of their values in the ambient atmosphere, (39) becomes
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since 
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.  Writing the ratios across the shock in terms of the shock Mach number, MS, using (16), (19) and (23), gives
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For γ = 1.4, 
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It has not been possible to find a simple analytical inversion of (42), but the following empirical relationship provides a good description of the shock Mach number in terms of the total overpressure in the subsonic case,
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(b) Supersonic case

Equation (32) gives the local Mach number of the flow behind a shock in terms of the shock Mach number, MS , and the ratio of specific heats, γ.  Putting the flow Mach number equal to 1, and γ = 1.4 gives a value for the shock Mach number of 2.0681.  For shocks stronger than this value, the flow immediately behind the shock is locally supersonic.  In this case, a bow shock forms ahead of any stationary object or structure enveloped by the primary shock of the blast wave.  The supersonic flow will pass through the bow shock and be made locally subsonic before being brought to rest by the object or structure.  

The total pressure behind a reflected shock in terms of the hydrostatic pressure, sometimes called the Rayleigh supersonic pitot formula, is given as equation (6.3), in Liepmann and Roshko, 1957.  Using this equation gives the total overpressure, OPTS, as
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(44)

where PT2 is the total pressure behind the reflected shock, P0 is the pressure of the ambient atmosphere ahead of the incident shock, and PS and M1 are the hydrostatic pressure and flow Mach number, respectively, behind the incident shock.

Using (13) and (32) in (44) gives
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For γ = 1.4, 



[image: image51.wmf](

)

(

)

(

)

1

45

96

42

5

1

1

.

67920

5

.

2

2

4

2

7

2

0

-

+

-

+

-

=

S

S

S

S

TS

M

M

M

M

P

OP

.  
(46)

No analytical solution of (46) could be found to give the shock Mach number in terms of the total pressure in the supersonic case, but the following empirical relationship, (47), gives a good description for shock Mach numbers from 2.06 to 3.5.  For shock Mach numbers greater than 3.5, real-gas effects begin to become important, and these equations become increasingly less accurate.



[image: image52.wmf]5305

.

0

0

3091

.

0

1421

.

1

÷

÷

ø

ö

ç

ç

è

æ

+

=

P

OP

M

TS

S

.  
(47)

Reflected Overpressure

Reflected overpressure (OPRS) is the overpressure exerted on a plane surface face-on to the shock front, immediately after the shock reflection.  If the plane, reflecting surface is finite in size, the reflected overpressure will be relieved by a rarefaction wave generated as the reflected shock diffracts around the boundary of the reflecting surface (Figure 4).  The reflected pressure, PRS, is given by
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and the reflected overpressure, OPRS, is
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For γ = 1.4,
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and the inverse of (50) is
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Figure 4.  Numerical simulation of a Mach 2.5 shock incident on a rigid structure.  The gas behind the reflected shock has been brought to rest non-isentropically, and the pressure on the structure is the reflected pressure, PR. As the reflected shock diffracts around the edge of the structure, a rarefaction wave is produced which moves at the speed of sound behind the reflected shock, aR.  (Courtesy A. A. van Netten)

Reflected Temperature and Sound Speed

It is necessary to know the sound speed behind a reflected shock in order to calculate the time for the rarefaction wave, produced when the reflected shock diffracts around the edges of the reflecting surface, to move across the reflecting surface.  After the arrival of the rarefaction wave, the excess pressure on the surface will reduce to the total overpressure, OPTS, described above.

The absolute temperature, TR, and sound speed, aR, in the region behind a reflected shock are derived in terms of the incident shock Mach number, MS, as follows, using (8) and (48)



[image: image58.wmf](

)

(

)

[

]

(

)

(

)

[

]

(

)

2

2

2

2

0

0

0

0

0

0

0

0

1

1

2

1

3

3

1

2

1

1

1

1

1

S

S

S

RS

RS

RS

R

RS

RS

RS

RS

M

M

M

P

P

P

P

P

P

P

P

P

P

T

T

+

-

-

-

-

+

-

=

÷

÷

ø

ö

ç

ç

è

æ

+

+

-

÷

÷

ø

ö

ç

ç

è

æ

+

-

+

=

=

=

g

g

g

g

g

g

g

g

g

r

r

g

r

r

g

, and 
(52)



[image: image59.wmf](

)

(

)

[

]

(

)

(

)

[

]

(

)

S

S

S

RS

RS

M

M

M

T

T

a

a

1

1

2

1

3

3

1

2

2

2

0

0

+

-

-

-

-

+

-

=

=

g

g

g

g

g

.  
(53)

For γ = 1.4,
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The inverse of (54) is
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and of (55) is
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Entropy

The entropy (S) of a gas is defined in terms of its change, dS, when a quantity of heat, dQ, is added at a temperature T, viz.
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Since dQ  = cv dT + PdV, for a perfect gas, the total change of entropy across a shock is given by 
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where PV = RT, and the universal gas constant R = 8.3143 J mole-1 K-1.  
R = cp-cv, therefore
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(59) and (60) give
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(61), (27) and (19) give
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For γ = 1.4 and R = 8.3143 J mole-1 K-1, the change of entropy across a shock is 
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Rankine-Hugoniot Spreadsheets

In order to make the above equations easy to use, they have been incorporated into a set of Excel© spreadsheets.  The first spreadsheet requires the input of the shock Mach number, MS, and calculates the changes of all the physical properties across the shock in terms of the ambient properties, and in SI and Imperial units.  Illustrated below is the output for an input shock Mach number of 1.5.


Hydrostatic Overpressure (OP)


Dynamic Pressure (DP)



   Ms
Atm
psi
kPa
Atm
psi
kPa

1.5
1.458333
21.43167
147.7656
0.628592
9.237787
63.69208

Total Overpressure (TOP)


Reflected Overpressure (ROP)



Atm
psi
kPa
Atm
psi
kPa

2.146445
31.54415
217.4885
4.425287
65.03402
448.3922

Density (D)


Flow Speed (U)




  D/Do
lb/ft^3
kg/m^3
  U/Ao
U/A
ft/s
m/s

1.862069
0.142448
2.281034
0.694444
0.604387
775.6097
236.4089

Sound Speed (A)


Temperature (T)

Inv. Press
Reflect Sound Speed


 A/Ao
ft/s
m/s
 T/To
T (C)
  Po/P
ft/s
m/s

1.149007
1283.3
391.1552
1.320216
107.2735
0.40678
1447.214
441.1164

The other spreadsheets allow the input of the change of any of the physical properties across the shock, in any unit system.  For example, the spreadsheet shown below is that for an input value for the dynamic pressure of 15 psi.


Hydrostatic Overpressure (OP)


Dynamic Pressure (DP)



   Ms
Atm
psi
kPa
Atm
psi
kPa

1.623125
1.906956
28.02463
193.2223
1.020686
15
103.421

Total Overpressure (TOP)


Reflected Overpressure (ROP)



Atm
psi
kPa
Atm
psi
kPa

3.062135
45.00114
310.2709
6.263559
92.04926
634.6551

Density (D)


Flow Speed (U)




  D/Do
lb/ft^3
kg/m^3
  U/Ao
U/A
ft/s
m/s

2.070487
0.158392
2.536347
0.839191
0.708236
937.2739
285.6848

Sound Speed (A)


Temperature (T)

Inv. Press
Reflect Sound Speed


 A/Ao
ft/s
m/s
 T/To
T (C)
  Po/P
ft/s
m/s

1.184904
1323.393
403.3755
1.403996
131.4156
0.344002
1524.991
464.8233

The spreadsheets can be run on any PC, including laptops and palm computers.  In calculating the total overpressure, allowance is made for both supersonic and subsonic flow behind the shock.  Warnings are presented if the input values exceed the range of validity.  The spreadsheets are demonstrated on www.blastanalysis.com, and information is provided on procedures for obtaining a licence for their use.
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